1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 5 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 1+6+15 & 2+18 \\ 12+5 & 6 \\ 2+6+5 & 4+6 \end{bmatrix} = \begin{bmatrix} 22 & 20 \\ 17 & 6 \\ 13 & 10 \end{bmatrix}$$

2) Find the null space of the matrix below. (16 points)

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & -6 \end{bmatrix}$$

 $x_1 + 2x_2 = 0$ $x_1 = -2x_2$ $x_3 - 6x_4 = 6$ $x_3 = 6x_4$

$$\left\{ \begin{bmatrix} -2x_2 \\ x_2 \\ 6x_4 \\ x_4 \end{bmatrix} : x_2, x_4 \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} x_2 + \begin{bmatrix} 0 \\ 0 \\ 6 \\ 1 \end{bmatrix} x_4 : x_2, x_4 \in \mathbb{R} \right\} = span\left(\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 6 \\ 1 \end{bmatrix} \right\} \right)$$

3) Reduce the matrix below to reduced row echelon form. (16 points)

$$\begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 4 & 6 \\ 1 & 2 & 1 & 0 \\ 1 & 4 & 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 4 & 6 \\ 1 & 2 & 1 & 0 \\ 1 & 4 & 5 & 6 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 4 & 6 \\ 1 & 2 & 1 & 0 \\ 1 & 4 & 5 & 6 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & -2 \\ 1 & 4 & 5 & 6 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & -2 \\ 1 & 4 & 5 & 6 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & -2 \\ 0 & 2 & 4 & 4 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 2 & 4 & 4 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 2 & 4 & 4 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$R_{1} \rightarrow R_{1} - 2R_{2} \quad R_{4} \rightarrow R_{4} - 2R_{2} \qquad R_{3} \rightarrow -\frac{1}{2}R_{3} \qquad R_{1} \rightarrow R_{1} + 4R_{3}$$
$$R_{2} \rightarrow R_{2} - R_{3}$$
$$R_{4} \rightarrow R_{4} + 2R_{2}$$

4) Answer the questions below (3 points each)

A) Let A be a 6×6 matrix that is a product of elementary matrices. How many solutions does the

equation
$$A\vec{x} = \begin{bmatrix} 0\\0\\0\\1\\2\\2 \end{bmatrix}$$
 have?

1

B) Suppose A is a 4×7 matrix whose column space has dimension 3. When A is row reduced, how many rows of zeroes does it have?

1

C) Suppose *A* is a 6 × 4 matrix. When row reduced, it has 2 pivots. How many solutions does the equation $A\vec{x} = \vec{0}$ have?

∞

D) Suppose *A* is a 6 × 4 matrix. When row reduced, it has 4 pivots. How many solutions does the equation $A\vec{x} = \vec{0}$ have?

1

E) Let *A* be a 5 × 5 matrix. Assume $A\vec{x} = \vec{0}$ has infinitely many solutions, but $A\vec{x} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ has no solutions. What is the maximum number of pivots of *A*, after it is row reduced?

4

5) For each of the following, answer whether or not the two matrices can be multiplied. Answer "Y" for yes and "N" for no. (8 points)

Y or N <mark>No</mark>	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$	
Y or N Yes	[1 3 5		
Y or N <mark>Yes</mark>	[1 3 5	$ \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} $	
Y or N Yes	$[\begin{smallmatrix} 1 \\ 4 \end{smallmatrix}$	$\begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$	

6) Solve the matrix equation below for X. Assume all matrices are of compatiable sizes and invertible. (8 points)

$$AX + BX = C$$

AX + BX = C(A + B)X = C X = (A + B)⁻¹C The following row reduction may be helpful for the problems on this page.

۲3	2	1	4	ך 5		г1	0	1	0	ך0
1	1	0	1	1		0	1	-1	0	0
6	4	2	12	10	\sim_R	0	0	0	1	0
1	1	0	0	0		0	0	0	0	1
L8	6	2	14	12		LO	0	0	0	01

7) Find the column space of the matrix below, avoid redundant vectors when possible. (7 points)

$$span\left(\begin{cases} 3 & 2 & 1 & 4 & 5\\ 1 & 1 & 0 & 1 & 1\\ 6 & 4 & 2 & 12 & 10\\ 1 & 1 & 0 & 0 & 0\\ 8 & 6 & 2 & 14 & 12 \end{cases}\right)$$

8) What is the dimesion of the vector space below?. (7 points)

	1	۲ <u>3</u> -		г 21		r17		r 4 1		ך 5 ק	U)	١
span		1		1		0		1		1		١
		6	,	4	,	2	,	12	,	10	}	
		1		1		0		0		0		I
	$\left(\right)$	<u>ل8</u>		L6-		L2-		14		12	IJ,	/

4

9) Find the inverse of the matrix below. (8 points)

$$\begin{bmatrix} 0.5 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 1 & 0 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 \\ 1 & 3 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -2 & 6 & -2 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -2 & 6 & -2 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 10 & -4 & 2 \\ 0 & 1 & 0 & -4 & 2 & -1 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 10 & -4 & 2 \\ -4 & 2 & -1 \\ 2 & -1 & 1 \end{bmatrix}$$