\qquad

1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 1 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 0 \\
5 & 6
\end{array}\right]} \\
{\left[\begin{array}{cc}
1+6+15 & 2+18 \\
12+5 & 6 \\
2+6+5 & 4+6
\end{array}\right]=\left[\begin{array}{cc}
22 & 20 \\
17 & 6 \\
13 & 10
\end{array}\right]}
\end{gathered}
$$

2) Find the null space of the matrix below. (16 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

$$
x_{1}+2 x_{2}=0
$$

$$
x_{1}=-2 x_{2}
$$

$$
x_{3}-6 x_{4}=6
$$

$$
x_{3}=6 x_{4}
$$

$$
\left\{\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
6 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right] x_{2}+\left[\begin{array}{l}
0 \\
0 \\
6 \\
1
\end{array}\right] x_{4}: x_{2}, x_{4} \in \mathbb{R}\right\}=\operatorname{span}\left(\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
6 \\
1
\end{array}\right]\right\}\right)
$$

3) Reduce the matrix below to reduced row echelon form. (16 points)

$$
\begin{aligned}
& {\left[\begin{array}{llll}
4 & 8 & 4 & 8 \\
0 & 2 & 4 & 6 \\
1 & 2 & 1 & 0 \\
1 & 4 & 5 & 6
\end{array}\right]} \\
& \begin{array}{c}
{\left[\begin{array}{llll}
4 & 8 & 4 & 8 \\
0 & 2 & 4 & 6 \\
1 & 2 & 1 & 0 \\
1 & 4 & 5 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & 2 & 4 & 6 \\
1 & 2 & 1 & 0 \\
1 & 4 & 5 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 2 & 4 & 6 \\
0 & 0 & 0 & -2 \\
1 & 4 & 5 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 2 & 4 & 6 \\
0 & 0 & 0 & -2 \\
0 & 2 & 4 & 4
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -2 \\
0 & 2 & 4 & 4
\end{array}\right]} \\
R_{1} \rightarrow \frac{1}{4} R_{1} \quad R_{3} \rightarrow R_{3}-R_{1} \quad R_{4} \rightarrow R_{4}-R_{1} \quad \begin{array}{ll}
R_{2} & \rightarrow \frac{1}{2} R_{2}
\end{array}
\end{array} \\
& \sim_{R}\left[\begin{array}{cccc}
1 & 0 & -3 & -4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -2 \\
0 & 2 & 4 & 4
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 0 & -3 & -4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -2 \\
0 & 0 & 0 & -2
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 0 & -3 & -4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -2
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& R_{1} \rightarrow R_{1}-2 R_{2} \quad R_{4} \rightarrow R_{4}-2 R_{2} \quad R_{3} \rightarrow-\frac{1}{2} R_{3} \quad R_{1} \rightarrow R_{1}+4 R_{3} \\
& R_{2} \rightarrow R_{2}-R_{3} \\
& R_{4} \rightarrow R_{4}+2 R_{2}
\end{aligned}
$$

4) Answer the questions below (3 points each)
A) Let A be a 6×6 matrix that is a product of elementary matrices. How many solutions does the equation $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 2\end{array}\right]$ have?
B) Suppose A is a 4×7 matrix whose column space has dimension 3 . When A is row reduced, how many rows of zeroes does it have?

1
C) Suppose A is a 6×4 matrix. When row reduced, it has 2 pivots. How many solutions does the equation $A \vec{x}=\overrightarrow{0}$ have?
∞
D) Suppose A is a 6×4 matrix. When row reduced, it has 4 pivots. How many solutions does the equation $A \vec{x}=\overrightarrow{0}$ have?

1
E) Let A be a 5×5 matrix. Assume $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions, but $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ has no solutions. What is the maximum number of pivots of A, after it is row reduced?
5) For each of the following, answer whether or not the two matrices can be multiplied. Answer " Y " for yes and "N" for no. (8 points)
Y or $N\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
No

Y or $N\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Yes
Y or $N\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
Yes
Y or $N\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
Yes
6) Solve the matrix equation below for X. Assume all matrices are of compatiable sizes and invertible. (8 points)

$$
A X+B X=C
$$

$$
\begin{aligned}
& A X+B X=C \\
& (A+B) X=C \\
& X=(A+B)^{-1} C
\end{aligned}
$$

The following row reduction may be helpful for the problems on this page.

$$
\left[\begin{array}{ccccc}
3 & 2 & 1 & 4 & 5 \\
1 & 1 & 0 & 1 & 1 \\
6 & 4 & 2 & 12 & 10 \\
1 & 1 & 0 & 0 & 0 \\
8 & 6 & 2 & 14 & 12
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

7) Find the column space of the matrix below, avoid redundant vectors when possible. (7 points)

$$
\left[\begin{array}{ccccc}
3 & 2 & 1 & 4 & 5 \\
1 & 1 & 0 & 1 & 1 \\
6 & 4 & 2 & 12 & 10 \\
1 & 1 & 0 & 0 & 0 \\
8 & 6 & 2 & 14 & 12
\end{array}\right]
$$

$\operatorname{span}\left(\left\{\left[\begin{array}{l}3 \\ 1 \\ 6 \\ 1 \\ 8\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 1 \\ 6\end{array}\right],\left[\begin{array}{c}4 \\ 1 \\ 12 \\ 0 \\ 14\end{array}\right],\left[\begin{array}{c}5 \\ 1 \\ 10 \\ 0 \\ 12\end{array}\right]\right\}\right)$
8) What is the dimesion of the vector space below?. (7 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
3 \\
1 \\
6 \\
1 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4 \\
1 \\
6
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
2 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
1 \\
12 \\
0 \\
14
\end{array}\right],\left[\begin{array}{c}
5 \\
1 \\
10 \\
0 \\
12
\end{array}\right]\right\}\right)
$$

4
9) Find the inverse of the matrix below. (8 points)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0.5 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
0.5 & 1 & 0 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 2 & 0 & 2 & 0 & 0 \\
1 & 3 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 2 & 0 & 2 & 0 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & -2 & 6 & -2 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & -2 & 6 & -2 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & 2 & -1 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & -2 & 6 & -2 & 0 \\
0 & 1 & 0 & -4 & 2 & -1 \\
0 & 0 & 1 & 2 & -1 & 1
\end{array}\right] \\
& \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & 10 & -4 & 2 \\
0 & 1 & 0 & -4 & 2 & -1 \\
0 & 0 & 1 & 2 & -1 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
0.5 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
10 & -4 & 2 \\
-4 & 2 & -1 \\
2 & -1 & 1
\end{array}\right]}
\end{aligned}
$$

